N 皇后位运算代码示例
2022年9月20日 更新
开启更多功能,提升办公效能


# Python

def totalNQueens(self, n): 
if n < 1: return [] 
self.count = 0 
self.DFS(n, 0, 0, 0, 0) 
return self.count

def DFS(self, n, row, cols, pie, na): 
# recursion terminator 
if row >= n: 
self.count += 1 
return

bits = (~(cols | pie | na)) & ((1 << n) — 1)  # 得到当前所有的空位

while bits: 
p = bits & —bits # 取到最低位的1
bits = bits & (bits — 1) # 表示在p位置上放入皇后
self.DFS(n, row + 1, cols | p, (pie | p) << 1, (na | p) >> 1) 
  # 不需要revert  cols, pie, na 的状态



// Java

class Solution {
private int size; 
private int count;

private void solve(int row, int ld, int rd) { 
if (row == size) { 
count++; 
return; 
}
int pos = size & (~(row | ld | rd)); 
while (pos != 0) { 
int p = pos & (-pos); 
pos -= p; // pos &= pos - 1; 
solve(row | p, (ld | p) << 1, (rd | p) >> 1); 

public int totalNQueens(int n) { 
count = 0; 
size = (1 << n) - 1; 
solve(0, 0, 0); 
return count; 
}


# 附带非位运算判重(Python)

def solveNQueens(self, n):
def DFS(queens, xy_dif, xy_sum):
p = len(queens)
if p==n:
result.append(queens)
return None
for q in range(n):
if q not in queens and p-q not in xy_dif and \
p+q not in xy_sum:
DFS(queens+[q], xy_dif+[p-q], xy_sum+[p+q])
result = []
DFS([],[],[])
return [ ["."*i + "Q" + "."*(n-i-1) for i in sol] for sol in result]




C/C++

class Solution {
public:
    int totalNQueens(int n) {
        dfs(n, 0, 0, 0, 0);
        
        return this->res;
    }
    
    void dfs(int n, int row, int col, int ld, int rd) {
        if (row >= n) { res++; return; }
        
        // 将所有能放置 Q 的位置由 0 变成 1,以便进行后续的位遍历
        int bits = ~(col | ld | rd) & ((1 << n) - 1);
        while (bits > 0) {
            int pick = bits & -bits; // 注: x & -x
            dfs(n, row + 1, col | pick, (ld | pick) << 1, (rd | pick) >> 1);
            bits &= bits - 1; // 注: x & (x - 1)
        }
    }


private:
    int res = 0;
};




// Javascript
var totalNQueens = function(n) {
  let count = 0;
  void (function dfs(row = 0, cols = 0, xy_diff = 0, xy_sum = 0) {
    if (row >= n) {
      count++;
      return;
    }
    // 皇后可以放的地方
    let bits = ~(cols | xy_diff | xy_sum) & ((1 << n) - 1);
    while (bits) {
      // 保留最低位的 1
      let p = bits & -bits;
      bits &= bits - 1;
      dfs(row + 1, cols | p, (xy_diff | p) << 1, (xy_sum | p) >> 1);
    }
  })();
  return count;
};